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Supplementary Figure 1. A graph of
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= e−kε for different values of ε. As ε gets smaller, the values the function can attain

for integer k become closer together (y-axis intercepts), until they are sufficiently dense to reproduce any real number.
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Supplementary Figure 2. The Farey sequence of order 5. Image credit [11].
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Supplementary Figure 3. Flow chart showing a robust protocol for work extraction in the presence of measurement uncertainty.

SUPPLEMENTARY NOTE 1

The generalised thermal state

In this section we prove that the generalised thermal state, in our framework of multiple conserved observables, can
be obtained by either minimising the free entropy or by maximising the von Neumann entropy.

Minimising the free entropy is relatively simple, regardless of the relationship between the observables. We use the
definition of free entropy from the main paper (Eq. 3) with n conserved observables labelled by Ai, i ∈ {1, · · · , n},

F̃ (ρ) =
∑
i

βi〈Ai〉 − S(ρ). (1)

where βi are the inverse temperatures corresponding to each observable, 〈Ai〉 = tr[Aiρ] are the averages of each
conserved quantity, and S(ρ) = −tr[ρ log ρ] is the von Neumann entropy. We relabel the linear combination of
observables as a single operator R =

∑
i βiAi so that

F̃ (ρ) = tr[Rρ]− S(ρ). (2)

We first note that the state which minimizes this function must be diagonal in the eigenbasis of R (If it was
not, one could simply de-cohere the state in this basis, resulting in a state with an identical value for tr[Rρ] but
higher entropy). If the occupation probability of the eigenstate with eigenvalue Ri is denoted by pi, one can perform
Lagrangian optimization to extremise

L(ρ) =
∑
i

Ripi +
∑
i

pi log pi + λ(
∑
i

pi − 1) (3)
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where λ is a Lagrange multiplier to obtain

ρ =
e−R

Z =
e−

∑
i βiAi

Z (4)

where the partition function is Z = tr[e−
∑

i βiAi ]. Our aim is now to show that we arrive at the same form of solution
if we maximise the von Neumann entropy subject to the averages of the conserved observables being fixed. There are
two cases to consider here, depending on whether the observables Ai commute with each other or not.

Commuting observables

In this case, we wish to maximise the entropy subject to the constraints that all n observables commute with one
another i.e [Ai, Aj ] = 0, ∀i, j ∈ {1, · · · , n} and that each observable has some fixed average value on the system Ai.

Since all of the observables commute, there exists a common eigenbasis, and the state that maximizes the entropy
will necessarily be diagonal in this basis. (Otherwise, as above, one could de-cohere the state in the common eigenbasis,
resulting in a state with the identical averages Ai but higher entropy).

The problem can be expressed as a Lagrangian optimization subject to the constraints that the state is normalised
and the average observable quantities are constant

S(ρ) = −tr[ρ log ρ]−
∑
i

βi(tr[ρAi]−Ai) + λ(
∑
i

pi − 1)

= −
∑
j

pj log pj −
∑
i

βi(
∑
j

pjm
i
j −Ai) + λ(

∑
j

pj − 1) (5)

where we interpret λ and βi as the Lagrange multipliers and mi
j is the j-th eigenvalue of the i-th observable. By

solving ∂S
∂pi

= 0 we find the solution is

ρ =
e−

∑
i βiAi

Z , (6)

Non-commuting observables

For the case of non-commuting observables we will have to be more careful as we can no longer diagonalise them
in the same basis.
First we imagine that the average of the conserved observables are given to us, i.e. we have the numbers Ai for
i ∈ {1, · · · , n}. Now we consider a state of the form

ρ =
e−

∑
i βiAi

Z . (7)

Since we know the operators Ai we can compute their averages on the state ρ as functions of the inverse temperatures
βi

Ai(ρ) = tr[ρAi] = fi(β) ∀i (8)

where β is the vector of inverse temperatures (β1, · · · , βn). For the average quantities that we have been given, we
now solve for the βi

fi(β) = Ai ∀i (9)

The fact there there always exist solutions is non-trivial. In particular it implies that for any given set of average
values {A}i (here we implicitly assume compatible average values), there exist corresponding temperatures βi such
that a state of the form (77) pertains to these averages. This result was first proved by Jaynes [22] and subsequently
via a different method by Kai [33]. Solving these equations, we find the particular solutions β∗i . We now define a new

function F̃ ∗ which acts on density operators

F̃ ∗(µ) =
∑
i

β∗i 〈Ai〉µ − S(µ) (10)
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Next, consider a density operator γ with the properties that it has average values 〈Ai〉γ equal to Ai and that it also

maximises the entropy S(γ). Then F̃ ∗(γ) is

F̃ ∗(γ) =
∑
i

β∗i 〈Ai〉γ − S(γ)

=
∑
i

β∗i Ai − S(γ) (11)

We now consider the unique density operator σ that minimises F̃ ∗. It can be obtained via the method in the first
section and is simply

σ =
e−

∑
i β
∗
i Ai

Z (12)

However, from Eqs. (88)) and (99) we observe that the state with inverse temperatures β∗i and the form given in Eq.
(1212) has averages Ai (since the non-trivial solutions to a linear system are unique), which implies

F̃ ∗(σ) =
∑
i

β∗i Ai − S(σ). (13)

Since F̃ ∗(ρ) is at a minimum, it implies that S(σ) is maximum, thus

F̃ ∗(σ) = F̃ ∗(γ) =⇒ σ = γ (14)

and we see that the state which maximises the entropy and has averages {Ai}i is indeed the generalised thermal state.

SUPPLEMENTARY NOTE 2

Explicit batteries: allowed operations and the second law

In the main text we presented the proof of our claim for the case that the work storage systems (the batteries) were
implicit. Here we present an extended framework in which the batteries are explicit.

Our setup is much the same as in the main text: we have a bath b, system s and in addition, two batteries, which
we call weights wA and wB . We model the battery systems as weights in the most general sense, whose value for each
observable is given by a position observable (for energy, the height of the weight corresponds to the stored energy,
but note that these weights need not be gravitational). If the observable has a discrete spacing such as angular
momentum, then the weight may be a ladder with discrete spacing, but otherwise we take it to be continuous.

The value of observable A on the weight is proportional to the position operator AwA
= cax̂a, where ca is a

constant of appropriate units in order to recover the correct dimensions for the quantity A, and we define the work
by ∆WA = ∆AwA

. At this stage it is also useful to define the translation operator

ΓεwA
= exp(−iεp̂a) (15)

where ε reflects the amount of translation of the weight and p̂a corresponds to the operator canonically conjugate
to the position operator â (i.e. the momentum). The translation operator effects the following transformation on
unnormalised position states of the pointer ΓεwA

|xa〉 = |xa+ε〉. Analogously we make the same definitions for quantity
B. Differences in the average position of the weight before and after the protocol allows us to read off the change in
the work of that quantity.

Our intention here is to remain as general as possible, whilst eliminating the possibility of ‘cheating’ by bringing
in resources from outside this framework (such as external sources of work or free energy), or making use of objects
within the framework for a purpose other than intended (for example, by using the batteries as a cold reservoirs in
generalised heat engines). We make four assumptions on our scheme:

I We assume that the battery systems are independent of one another and only accept and store one type of
conserved quantity. As such, each quantity is assigned its own battery system.
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II The set of allowed operations will consist of global unitaries on the bath, system and weights, U , which conserve
A and B. Using rule II we have

[U,Ab +As +AwA
] = 0

[U,Bb +Bs +BwB
] = 0

(16)

In this way, we impose the first laws of thermodynamics for any initial state:

∆Ab + ∆As + ∆AwA
= 0

∆Bb + ∆Bs + ∆BwB
= 0

(17)

We choose to study unitaries as opposed to more general completely positive (CP) maps in order not to use
external ancillas in non-thermal states as sources of energy or angular momentum.

III We assume translational invariance of the weights to reflect the fact that only displacements in the position on
the ladders are important. This implies that all unitaries U should commute with translation operators on each
weight.

IV Finally, we assume that all four bodies are initially uncorrelated and start in the product state ρs⊗τb⊗ρwA
⊗ρwB

.

The proof of the second law in the presence of explicit batteries follows the same logic as the implicit proof up to
a few subtleties.

Theorem 1. All unitary evolutions U which are weight-translation invariant cannot decrease the entropy of the system
and bath.

[U,Γε1wA
] = [U,Γε2wB

] = 0 =⇒ ∆S(ρsb) ≥ 0 (18)

where the translation operators Γ are defined in Eq. (1515).

Proof. Using the definition in Eq. (1515) we associate two momentum-like variables, conjugate to the positions of
the pointers, for quantities A and B. For clarity we let pa = p and pb = ϕ. We argue that since the weights are both
translationally invariant, this means that [U, p] = [U,ϕ] = 0. Any unitary with this property can be written

U =

∫
dp dϕV (p, ϕ)⊗ |p〉〈p| ⊗ |ϕ〉〈ϕ| (19)

where the first element of the tensor product V (p, ϕ) corresponds to a unitary operation on the combined system
and bath (as a function of the variables conjugate to the positions xa and xb of the two weights) and the second
corresponds to a projector onto the un-normalised momentum eigenstates |p〉 and |ϕ〉 of weights wA and wB . By rule
IVIV the weights are initially uncorrelated from the bath and system we can write the initial state (in density matrix
form) as ρsb ⊗ ρwA

⊗ ρwB
. We are interested in the post-measurement state of ρ′sb. After applying the unitary and

tracing out the battery systems, the state is

ρ′sb = trwAwB

(
U(ρsb ⊗ ρwA

⊗ ρwB
)U†

)
= trwAwB

(∫
dp dp′ dϕ dϕ′ V (p, ϕ)ρsbV

†(p′, ϕ′)⊗
(
|p〉〈p|ρwA

|p′〉〈p′| ⊗ |ϕ〉〈ϕ|ρwB
|ϕ′〉〈ϕ′|

))
=

∫
dp dϕ V (p, ϕ)ρsbV

†(p, ϕ) ⊗
(
〈p|ρwA

|p〉 ⊗ 〈ϕ|ρwB
|ϕ〉︸ ︷︷ ︸

mixing terms

)

=

∫
dp dϕ V (p, ϕ)ρsbV

†(p, ϕ)α(p)ν(ϕ) (20)

where α(p) and ν(ϕ) are the probability distributions for the momenta on the initial state of the weights. The system
and bath therefore evolve via a mixture of unitary transformations. Due to the concavity of the entropy, and the fact
that it is preserved under the unitary transformation V (p, ϕ), such evolutions can only increase the entropy of the
system and bath

S(ρsb) ≤ S
(∫

dp dϕ V (p, ϕ)ρsbV (p, ϕ)†α(p)ν(ϕ)

)
= S(ρ′sb)

=⇒ 0 ≤ ∆S(ρsb) (21)
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We now calculate the von Neumann entropy change of the bath and system. Following rule IVIV the bath and system
are initially uncorrelated, thus their initial entropy is simply the sum of their individual entropies. The unitary we
implement may be entangling, and therefore correlations may form between the bath and system during the protocol.
Using the result in Eq. (2121) and the fact that entropy respects subadditivity, we have that

∆Sb + ∆Ss ≥ ∆Ssb ≥ 0 (22)

∆Sb ≥ −∆Ss (23)

Following the line of thought from the main text, we now argue that the free entropy of the bath can only increase

∆F̃b = βA∆Ab + βB∆Bb −∆Sb ≥ 0. (24)

Using rule IIIIII and the entropy relation (2323) we arrive at the second law

βA(−∆As −∆WA) + βB(−∆Bs −∆WB)−∆Ss ≥ 0 (25)

=⇒ βA∆W̃A + βB∆W̃B ≤ −∆F̃s (26)

Note that if rule IIII is changed to the case of only average quantity conservation (i.e. Eq. (1616)) is dropped) then proof
of the second law still holds. Thus our result is universal for both strict and average quantity conservation.

SUPPLEMENTARY NOTE 3

Generalised work extraction details for the case of explicit weights

In this section we show how the protocols for trade-offs between conserved quantities and generalised work extraction
in the main paper can be extended from implicit to explicit batteries, in the case of commuting observables. This
follows closely the approach in [44, 55].

Any protocol on the system and bath in the implicit battery framework can be represented by a total unitary
transformation U (which may be the product of several unitary steps). We can write this transformation as

U =
∑
ij

Uij |i〉〈j| (27)

where the basis states |i〉 are joint eigenstates of As +Ab and Bs +Bb with eigenvalues ai and bi respectively.
In the explicit battery framework described in the previous section, a general unitary U would not be allowed as it

does not strictly conserve the quantities A and B. However, we can instead perform the unitary

Ũ =
∑
ij

Uij |i〉〈j| ⊗ Γaj−aiwA
⊗ Γbj−biwB

. (28)

which commutes with Atotal = As + Ab + AwA
and Btotal = Bs +Bb +BwA

. We will now show that for appropriate

initial states of the weights (in particular very broad coherent states with momentum approximately zero) Ũ has
approximately the same effect on the system and bath as U . Due to the first laws, the work extracted into the weights
will then be approximately the same as in the case with implicit batteries. Furthermore, this approximation can be
made as good as desired, and the protocol does not degrade the state of the weights for use in further protocols.

In the momentum representation, this can be written

Ũ =

∫ ∫
V (p, ϕ)⊗ |p〉〈p| ⊗ |ϕ〉〈ϕ|dp dϕ (29)

where V (p, ϕ) =
∑
ij Uije

−ip(aj−ai)e−iϕ(bj−bi)|i〉〈j|.
Ideally, in order to implement U , we want V (p, ϕ) = V (0, 0) = U , which corresponds to a very narrow wavefunction

for the momentum of wA and wB . To show that this can always be done, we trivially extend the proof of Malabarba
et al. in Theorem 1 of [44] to the case of two battery systems and show that the state of the system ρ′s after
the global unitary will remain close in trace distance to that of the desired local evolution UρsU

†. Let ρ′sb =

trwA wB
(Ũρsb ⊗ ρwA

⊗ ρwB
Ũ†), we thus want to show∥∥∥∥trwA wB

(Ũρsb ⊗ ρwA
⊗ ρwB

Ũ†)− UρsbU
†
∥∥∥∥

=

∥∥∥∥∫ ∫ dp dϕ〈p|ρwA
|p〉〈ϕ|ρwB

|ϕ〉V (p, ϕ)ρsbV
†(p, ϕ)− UρsbU

†
∥∥∥∥ ≤ ε (30)
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for an arbitrary ε > 0. 〈p|ρwA
|p〉 and 〈ϕ|ρwB

|ϕ〉 are well defined probability distributions of the two weights, which
we will denote µwA

(p) and µwB
(ϕ). Since V (p, ϕ) is a continuous function of its variables, then there always exists

δ,∆ such that

max
(p,ϕ)∈I

∥∥∥∥V (p, ϕ)ρsbV
†(p, ϕ)− V (0, 0)ρsbV (0, 0)†

∥∥∥∥ < ε

2
(31)

where I = {(−δ, δ), (−∆,+∆)}. We now choose initial weight states such that the probability distributions µwA
(p)

and µwB
(ϕ) satisfy ∫ δ

−δ
µwA

(p) dp

∫ ∆

−∆

µwB
(ϕ)dϕ ≥ 1− ε

2
. (32)

Substituting Eqs. (3131) – (3232) into Eq. (3030)) one arrives at the result,∥∥∥∥trwA wB
(Ũρsb ⊗ ρwA

⊗ ρwB
Ũ†)− UρsbU

†
∥∥∥∥ ≤ ε (33)

as desired. Note that µwA
(p) and µwB

(ϕ) are not changed by the protocol, due to the form of Eq. (2929), and hence
the weights can be reused in future protocols without being degraded.

For the work extraction protocol in particular, the total Ũ will be equal to a product of unitaries for each individual
step, Ũ = Ũ1Ũ2. As an explicit example, the unitary for the first step, in which ρs is rotated into the joint eigenbasis
of A and B is given by

Ũ1 =
∑
ij

c∗ij |ai, bi〉〈aj , bj |s ⊗ Ib ⊗ Γai−ajwA
⊗ Γbi−bjwB

, (34)

where |ψi〉 =
∑
j cij |aj , bj〉. The unitary which swaps a two-dimensional subspace of the bath and system is given by

Ũ2 = Isb ⊗ IwA
⊗ IwB

+

(
|n′α′, 0〉〈nα, 1|sb ⊗ Γε1wA

⊗ Γε2wB
+ |nα, 1〉〈n′α′, 0|sb ⊗ Γ−ε1wA

⊗ Γ−ε2wB

)
−
(

(|nα, 1〉〈nα, 1|sb + |n′α′, 0〉〈n′α′, 0|sb)⊗ IwA
⊗ IwB

)
(35)

where |nα〉 = |n0, n1, n2, n3, · · ·nd, α〉 and |n′α′〉 = |n′0, n′1, n′2, n3, · · ·nd, α′〉 are the two states in occupation notation
which we choose from the bath. In order to obey strict quantity conservation the weights must shift by the difference
in the quantity gap in the system and bath, i.e. ε1 = ((as1−as0)− (abn′−abn)) and similarly ε2 = ((bs1− bs0)− (bbn′− bbn)),
where asi , b

s
i denote the eigenvalues of As, Bs and abi , b

b
i denote those of Ab, Bb.

SUPPLEMENTARY NOTE 4

A robust protocol in the case of experimental uncertainty

We present a protocol for work extraction from a system with multiple conserved observables in conjunction with a
generalised thermal bath, which is robust even in the case that we have uncertainty in the temperatures of the baths.
We wish to extract some amount of WA and WB and in order to do this we must implement the swap operation in

Eq. (3535).As such we wish to match the ratio of probabilities p′

p in the system ρs with the ratio of probabilities
q′n
qn

in

the bath τ(βA, βB).
Specifically, the subscripts n and n′ in the bath refer to the particularly chosen occupation states (level distri-

butions) n and n′ of the bath, which we will swap to implement the protocol. n = (n0, n1, n2, n3 · · · , nd) and
n′ = (n′0, n

′
1, n
′
2, n3, · · · , nd) such that n− n′ = ((n0 − n′0), (n1 − n′1), (n2 − n′2), 0 · · · , 0). For commuting observables

A,B, the bath probabilities take the following form:

qi ∝ e−(βAai+βBbi) (36)
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where ai(bi) are the eigenvalues of the observable A (B). Since we have taken the tensor product of n thermal states
τ(βA, βB), the ratio of probabilities between the two selected levels is simply

qn
qn′

=

∏d−1
i=0 q

n
i∏d−1

i=1 q
n′i
i

(37)

= q
n0−n′0
0 q

n1−n′1
1 q

n2−n′2
2 (38)

=

(
q0

q1

)n′1−n1
(
q0

q2

)n′2−n2

(39)

where we have used particle conservation
∑2
i=0 ni =

∑2
i=0 n

′
i to eliminate the term (n0 − n′0) in the last line. Substi-

tuting for the general form of the probabilities from Eq. (3636) we have

qn′

qn
= e−(x∆n1+y∆n2) (40)

= e
−y∆n1

(
x
y+

∆n2

∆n1

)
(41)

where x = (βA(a1 − a0) + βB(b1 − b0)), y = (βA(a2 − a0) + βB(b2 − b0)) and ∆n1 = (n′1 − n1), ∆n2 = (n′2 − n2). We

would like to show that for the quantity in Eq. (4040) we can match any possible ratio given to us from the system p′

p ,

which is equivalent to demanding ∣∣∣∣y∆n1

(
x
y + ∆n2

∆n1

)∣∣∣∣ < ε (42)

where ε is a constant of O(δp).
If we can achieve ε sufficiently small, then we can cover R+ well, in the sense that we can come as close as desired

to reproducing any number 0 < p0

p1 <∞ by scaling ∆n1 and ∆n2 by k (where k ∈ Z).

0 <

(
( qn′qn )k = e

−yk∆n1(
x
y+

∆n2

∆n1
)
> e−kε

)
<∞ (43)

We now present a robust method that will choose ∆n1 and ∆n2 such that Eq.(4242) holds, even in the case of
uncertainty due to the imprecision of the measuring apparatus.

We begin by making the reasonable assumption that the experimenter measures values which are rational – for
instance because the measuring apparatus displays a finite string of decimal digits. The experimenter measures the
temperatures of the thermal bath βA, βB and computes x

y , specifying the uncertainty with δ. They then find x
y = u

v

in its reduced form, such that u, v are relative primes. For simplicity, we will consider the case where 0 < x < y, in
which case 0 < x

y < 1 (the other cases follow similarly).

The exponent we wish to make small becomes∣∣∣∣y∆n1

(
u
v + ∆n2

∆n1

)∣∣∣∣ =

∣∣∣∣yv (u∆n1 + v∆n2)

∣∣∣∣ (44)

The best we can do is to appeal to number theory: since u an v are relative primes, by Bézout’s lemma [66], the
smallest (in magnitude) non-zero value of u∆n1 + v∆n2 is 1, and there exists a pair {∆n1,∆n2} for which this is
true. For this choice of pair, the quantity in Eq. (4444) is automatically less than ε if y

v < ε. What we find is that in
the case that y

v > ε, we do not know how to minimise this quantity because our best method fails. Thus, for fixed ε,

there is a finite set of points {pq }F that are excluded from our protocol. This set is precisely the Farey sequence of

order
⌊
y
ε

⌋
, (where b•c denotes the floor function: the largest integer not greater than •).

Definition 1 (Farey Sequence). “A Farey sequence of order n is the ascending series of irreducible fractions between 0
and 1 whose denominators do not exceed n”. [77]. For example the sequence of order 5 is F5 = { 0

1 ,
1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

4
5 ,

1
1}.

We proceed by constructing a robust protocol around these excluded points. The experimenter measures x
y , com-

putes u
v and identifies the closest rational u∗

v∗ from the Farey sequence of order
⌊
y
ε

⌋
to the computed point. It then

suffices to choose {∆n1 = u∗,∆n2 = −v∗}. With this choice

|x∆n1 + y∆n2| =
∣∣∣yv∗ (xy − u∗

v∗

)∣∣∣ (45)

< ε iff
∣∣∣xy − u∗

v∗

∣∣∣ < ε
yv∗ (46)
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For this choice, the quantity |x∆n1 + y∆n2| ≤ ε for the interval Iu∗/v∗ =
(
u∗

v∗ − ε
yv∗ ,

u∗

v∗ + ε
yv∗

)
− {u∗v∗ }.

This method will work for the case that all the intervals overlap, otherwise there would be regions for which the
protocol didn’t work. The fact that the intervals overlap is the subject of the next theorem.

Theorem 2 (Farey intervals overlap). The union of all intervals around each member of the Farey sequence of order⌊
y
ε

⌋
cover the unit interval on which the Farey sequence is defined.⋃

i

Iu/vi > [0, 1] (47)

where u/vi is the i-th element of the Farey sequence and Iu/v =
(
u
v − ε

yv ,
u
v + ε

yv

)
− {uv } is the interval.

Proof. To prove that the collection of intervals around all bad rationals u
v covers the real line, it suffices to prove

that the neighbouring intervals in this collection intersect. Consider the rational number u′

v′ that is the next rational

number (i.e. the neighbour) of u
v in the Farey sequence of order

⌊
y
ε

⌋
. Then the corresponding interval is Iu′/v′ =(

u′

v′ − ε
yv′ ,

u′

v′ + ε
yv′

)
−{u′v′ }. Comparing the supremum of the interval about u

v and the infimum of the interval about

u′

v′ , and using the properties of neighbours in a Farey sequence, one has that

sup
(
Iu′/v′

)
− inf

(
Iu/v

)
= u′

v′ − u
v − ε

y

(
1
v′ + 1

v

)
(48)

= 1
vv′ −

ε
y (v+v′)

vv′ , (49)

where we have used the property that if u
v and u′

v′ are neighbours in a Farey sequence, then u′

v′ − u
v = 1

vv′ [77].

Furthermore, if u
v and u′

v′ are neighbours in a Farey sequence of order
⌊
y
ε

⌋
, then v+ v′ > y

ε , else the mediant (u+u′)
(v+v′)

would also be in the Farey sequence of order
⌊
y
ε

⌋
which contradicts the assumption that u

v and u′

v′ are neighbours.

Therefore it follows from Eq. (4949) that sup
(
Iu′/v′

)
− inf

(
Iu/v

)
< 0. Thus the intervals overlap, and the union of the

intervals around every rational number in the sequence covers the real line (less the excluded rational numbers) �.
Finally, the experimenter must verify that the uncertainty in their measurement, δ, falls within the range of the

Farey interval they have chosen, x
y ± δ ∈ Iu∗/v∗ . If this criterion is not met, then the experimenter is obliged to

respecify either ε or δ, i.e. to respecify the fine-graining of the bath or make a more accurate measurement.
These arguments are easy to extend to the real line: the Farey sequence is translationally invariant on any unit
interval and can be scaled by a constant as necessary; the experimenter constructs the sequence of order

⌊
y
ε

⌋
between

the integers that x
y lies in, i.e. in the interval

⌊
x
y

⌋
< x

y <
⌈
x
y

⌉
, (where d•e denotes the ceiling function: the smallest

integer not less than •). The full protocol is summarised in Supplementary Fig. 33
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